
1

G52CPP
C++ Programming

Lecture 17

Dr Jason Atkin

http://www.cs.nott.ac.uk/~jaa/cpp/
g52cpp.html

2

Last Lecture

• Exceptions
– How to throw (return) different error values as

exceptions
– And catch the exceptions
– Anything can be thrown

• But you should prefer to use Exception sub-classes

– Pointers and Objects/References are different
– Sub-class gets caught by a base class catch

• RAII
– Resource Acquisition Is Initialisation

3

This Lecture

• Operator overloading
– Changing the meaning of an operator

• Some standard class library things
– Illustrating operator overloading

4

String and stream classes
#include <string>
#include <iostream>

using namespace std ;

int main()
{

string s1("Test string");
int i = 1;

cin >> i;

cout << s1 << " " << i << endl ;

cerr << s1.c_str() << endl ;
}

5

Example
#include <string>
#include <iostream>

using namespace std;

int main()
{

string s1("Test string");
int i = 1;

cin >> i;

cout << s1 << " " << i << endl;

cerr << s1.c_str() << endl;
}

Header files for string and i/o

Look in std namespace
for the names which follow
e.g. cin, cout, string

Overloaded operator - input

Overloaded operator - output

Convert string to const char*

6

Operator overloading

7

Operator overloading

• Function overloading:
– Change the meaning of a function according

to the types of the parameters

• Operator overloading
– Change the meaning of an operator according

to the types of the parameters

• Change what an operator means?
– Danger! Could make it harder to understand!

• Useful sometimes, do not overuse it
– e.g. + to concatenate two strings

My new class: MyFloat
#include <iostream>

using namespace std;

class MyFloat

{

public:

// Constructors

MyFloat(const char* szName, float f)

: f(f), strName(szName) {}

MyFloat(string strName, float f)

: f(f), strName(strName) {}

private:

float f;

string strName;

}; 8

char* and float

string and float

Internal string and float

Printing
// Constructors

MyFloat(const char* szName, float f)

: f(f), strName(szName)

{}

// Print details of MyFloat

void print()

{

cout << strName << " : " << f << endl;

}

9

Main function:
MyFloat f1("f1", 1.1f);
f1.print();
MyFloat f2("f2", 3.3f);
f2.print();

f1 : 1.1
f2 : 3.3

Conversion operators
// Print details of MyFloat

void print() { cout << strName << " : " << f << endl; }

// Conversion operators

operator string () { return strName; }

operator float () { return f; }

10

MyFloat f1("f1", 1.1f);
f1.print();
MyFloat f2("f2", 3.3f);
f2.print();

string s(f1);
cout << "s: " << s << endl;
float f(f1);
cout << "f: " << f << endl;

f1 : 1.1
f2 : 3.3
s: f1
f: 1.1

Non-member operator overload
MyFloat operator-(const MyFloat& lhs, const MyFloat& rhs)

{

MyFloat temp(

lhs.strName + "-" + rhs.strName, /* strName */

lhs.f - rhs.f); /* f, float value */

return temp;

}

class MyFloat

{

…

// Non-member operator overload – friend can access private

friend MyFloat operator-(

const MyFloat& lhs, const MyFloat& rhs);

…

}
11

Non-member operator overload
MyFloat operator-(const MyFloat& lhs, const MyFloat& rhs)

{

MyFloat temp(

lhs.strName + "-" + rhs.strName, /* strName */

lhs.f - rhs.f); /* f, float value */

return temp;

}

MyFloat f3 = f1 - f2;

f3.print();

Output: f1-f2 : -2.2

12

Or simplified version…
MyFloat operator-(const MyFloat& lhs, const MyFloat& rhs)

{

return MyFloat(

lhs.strName + "-" + rhs.strName,

lhs.f - rhs.f);

}

MyFloat f3 = f1 - f2;

f3.print();

Output: f1-f2 : -2.2

13

MyFloat f1("f1", 1.1f);

MyFloat f2("f2", 3.3f);

MyFloat f4 = f1 + f2;

f4.print();

Member function version
MyFloat MyFloat:: operator + (const MyFloat& rhs) const

{

return MyFloat(this->strName + "+" + rhs.strName ,

this->f + rhs.f);

}

class MyFloat

{

public:

// Member operator

MyFloat operator+ (

const MyFloat& rhs)
const;

};

14
f1+f2 : 4.4

Summary so far
int main()

{

MyFloat f1("f1", 1.1f);

f1.print();

MyFloat f2("f2", 3.3f);

f2.print();

MyFloat f3 = f1 - f2;

f3.print();

MyFloat f4 = f1 + f2;

f4.print();

string s(f4);

cout << "s:" << s << endl;

float f(f4);

cout << "f:" << f << endl;

}

class MyFloat

{

public:

…

// Member operator

MyFloat operator+

(const MyFloat& rhs)

const;

// Non-member

friend MyFloat operator-

(const MyFloat& lhs,

const MyFloat& rhs);

};

15

Member vs non-member versions

// Member function:

MyFloat MyFloat::operator+ (const MyFloat& rhs) const

// Non-member function

friend MyFloat operator- (const MyFloat& lhs,

const MyFloat& rhs)

// These would work:

MyFloat f5 = f1.operator+(f2); f5.print();

MyFloat f6 = operator-(f1, f2); f6.print();

// These would not compile:

MyFloat f7 = operator+(f1, f2); f7.print();

MyFloat f8 = f1.operator-(f2); f8.print();
16

17

Operator overloading restrictions
• You cannot change an operator's precedence

– i.e. the order of processing operators

• You cannot create new operators
– Can only use the existing operators

• You cannot provide default parameter values
• You cannot change number of parameters (operands)
• You cannot override some operators:

:: sizeof ?: or . (dot)

• You must overload +, += etc separately
– Overloading one does not overload the others

• Some can only be overloaded as member functions:
= , [] and ->

• Postfix and prefix ++ and –- are different
– Postfix has an unused int parameter

Post-increment vs pre-increment
MyFloat MyFloat::operator ++ (int)

{

MyFloat temp(

string("(") + strName +")++", f);

// NOW increment it

f++;

return temp;

}

MyFloat MyFloat::operator ++ ()

{

++f; // Increment f first

strName =

string("++(") + strName +")";

return *this;

}

MyFloat f9 = f5++;

cout << "Orig: ";

f5.print();

cout << "New : ";

f9.print();

MyFloat f10 = ++f6;

cout << "Orig: ";

f6.print();

cout << "New : ";

f10.print();

18

19

Assignment and comparison

20

== vs = operators
class C
{
public:

C(int v1=1, int v2=2)
: i1(v1), i2(v2)
{}

int i1, i2;
};

int main()
{

C c1, c2;
if (c1 == c2)
{

printf("Match");
}

}

• The code on the left will NOT
compile:

g++ file.cpp

In function `int main()':
file.cpp:17: error: no

match for 'operator=='
in 'c1 == c2'

• i.e. there is no == operator
defined by default

• Pointers could be compared
though, but not the objects
themselves

• NB: Assignment operator IS
defined by default (it is one of
the four functions created by
compiler when necessary)

21

!= can be defined using ==

bool MyClass::operator==
(const MyClass &other) const

{
// Compare values
// Return true or false

}

bool MyClass::operator!=
(const MyClass &other) const

{
return !(*this == other);

}

const means member
function does not alter

the object

22

+ and += are different

MyClass MyClass::operator +
(const MyClass &other) const

{
MyClass temp;
// set temp.… to be this->… + other.…
return temp ; // copy

}

MyClass& MyClass::operator +=
(const MyClass &other)

{
// set this->… to this->… + other.…
return *this ;

} MyClass m1, m2, m3;
(m1 += m2) += m3;

MyClass m1,m2,m3,m4;
m1 = m2 + m3 + m4;

const means member
function does not alter

the object
i.e. makes the this

pointer constant

23

Operator overloading summary
• Can define/change meaning of an operator, e.g.:
MyFlt operator-(const MyFlt&, const MyFlt&);

• You can make the functions member functions
MyFlt MyFlt :: operator-(const MyFlt& rhs) const ;

– Left hand side is then the object it is acting upon

• Act like any other function, only syntax is different:
– Converts a-b to a.operator-(b) or operator-(a,b)

• Access rights like any other function
– e.g. has to be a friend or member to access private /protected

member data/functions

• Also, parameter types can differ from each other, e.g.
MyFlt operator-(const MyFlt&, int);
– Would allow an int to be subtracted from a MyFlt

24

Questions to ask yourself
• Define as a member or as a global?

– If global then does it need to be a friend?

• What should the parameter types be?
– References?
– Make them const if you can

• What should the return type be?
– Should it return *this ?

– Does it need to return a copy of the object?
• e.g. post-increment must return a copy

• Should the function be const ?

25

Operator overloading - what to know

• Know that you can change the meaning of
operators

• Know that operator overloading is available
as both member function version and global
(non-member) function version

• Be able to provide the code for the
overloading of an operator
– Parameter types, const ?
– Return type
– Simple implementations

26

More strings, streams and
containers

Examples of operator overloading

27

Earlier example, again
#include <string>
#include <iostream>

using namespace std ;

int main()
{

string s1("Test string");
int i = 1;

cin >> i;

cout << s1 << " " << i << endl ;

cerr << s1.c_str() << endl;
}

>> is implemented
for the istream class

for each type of value on the
left-hand side of the operator

extern istream cin;
extern ostream cout;
extern ostream cerr;

Similarly for ostream and <<

28

My string comparison operator
bool operator== (const std::string & s1,

const std::string & s2)
{

return 0 == strcmp(s1.c_str() , s2.c_str());
}

int main ()
{

string str1("Same");
string str2("Same");
string str3("Diff");
printf("str1 and str2 are %s\n",

(str1 == str2) ? "Same" : "Diff");
printf("str1 and str3 are %s\n",

(str1 == str3) ? "Same" : "Diff");
printf("str2 and str3 are %s\n",

(str2 == str3) ? "Same" : "Diff");
}

Get the string as a char array

29

stringstream

#include <iostream>
#include <sstream>

using namespace std;

int main()
{

stringstream strstream;
string str;

short year = 1996;
short month = 7;
short day = 28;

strstream << year << "/";

strstream << month << "/";

strstream << day;

strstream >> str;

cout << "date: “ << str

<< endl;

return 0;

}

Send data to the stringstream object, a bit at a time
Extract it out again afterwards, as one string

I prefer sprintf() , for easier formatting, but this is ‘more C++’

30

File access using streams

• ifstream object - open the file for input
• ofstream object - open the file for output
• fstream object – specify what to open file for

– Takes an extra parameter on open (input/output/both)

• Use the << and >> operators to read/write
• In the same way as for cin and cout

• Simple examples follow
• Read the documentation for more information

31

File output example

#include <fstream>

using namespace std;

int main()

{

ofstream file;

// Open a file

file.open("file.txt");

// Write to file

file << "Hello file\n“ << 75;

// Manually close file

file.close();

return 0;

}

Since the ofstream object is
destroyed (with the stack frame)
the file would close anyway

32

File input example
#include <fstream>
#include <iostream>
using namespace std;
int main()
{

ifstream file;
char output[100];
string str;
int x;
file.open("file.txt");
file >> output;
file >> str;
file >> x;
file.close();
cout << output << endl;
cout << str << endl;
cout << x << endl;

}

Assume that the text loaded
(and output using cout)
matches what was written in the
previous sample

file << "Hello file\n“ << 75;

Note that the array has enough
space to hold the loaded data

33

SEM feedback

SEM Feedback – tick sheets

• Negative ticks were:
4 Size of the class is helpful
6 Module has helped your communication skills
3 Library resources helped
1 Module complements others I have studied
1 Method of assessment is appropriate

(they thought it should be 100% coursework)

• One person disliked most of the above, also saying the pace was
very wrong, the module did not help them to think critically and they
had not had an opportunity to show what they had learned �

– I guess it depends what ‘show’ means – I’d have thought the labs allowed this

• One person added extra ‘peace’ (I think) boxes to the assessment
34

More comments

• Multiple comments wanting more percentage on
coursework (rather than an exam)
– Problem is what I want to assess is whether you can be a

‘mechanic’ rather than a ‘driver’
– Yes it’s practical but there are a lot of important underlying

principles to test understanding of – hard to do in coursework
– Also harder to differentiate in coursework

• Split it into multiple courseworks
– Did that previously and many people did not submit the earlier

ones – I don’t like people throwing away marks
– If I split this on features, you need to decide early on what you

want to do
– Doing multiple smaller ones usually involves more work than one

large one
– You’ll get to practise good time management skills ☺ 35

More comments
• Many things in lectures are of no use in the coursework

or real world
– I agree on the coursework part – I deliberately did not require a

lot of the theory in the coursework – it’s the ‘can you drive’ bit
– The exam assesses a lot of the theory
– Almost all of the things we cover in lectures I had to know at

least at some point when programming in industry (plus more!)

• Give more walkthroughs of the framework, it’s hard
– A lot of it you can ignore, it will just work
– I don’t want to tell you everything – it would defeat the purpose

• I want you to show that you can understand existing code
• And adapt/reuse it in your own program

– The demo lectures are aimed at helping you to do so if you want
help, but there are limits to how far I want to go in that direction

– Concentrate on the demo code not the framework
36

More comments
• Better not to have so much on Fridays

– I agree � I don’t like it either

• Could change coursework to allow other than games
– You don’t have to do a game, but you do have to do something

with animation etc.
– By standardising some features which you have to provide, it

makes it possible to assess you against each other, to see how
much you understand of each of the key areas

– Each requirement needs you to understand how to do a specific
thing, which we can assess

• 60% Exam is daunting
– Please take a look at the previous exams
– They are not as bad as you may expect
– Mainly tests understanding of concepts

37

38

What now…

What now

• Today: No demo lecture, but I’ll go to the
lecture room and answer any questions
you have

• But you are probably better off going to the
labs and finishing your group projects

• Have a good Easter Break
• Finish your coursework programs – I am

encouraged by how far people have got
• Go through the slides and start thinking

about the exam
39

Next lecture

• After Easter…

• Template functions

• Template Classes

• A few more, important, comments about
the Standard Template Library (STL)
– And the slicing problem

40

